Georgia Cardio Conference

Alliance of Cardiovascular Professionals

RADIAL ACCESS

The latest fad or here to stay? Yuri B. Pride, MD, FACC

nere to stay? B. Pride, MD, FACC March 21, 2015

Disclosures

- No relevant disclosures
- Consultant
 - 2009-present, Boston Clinical Research Institute
 - Eli Lilly
 - Roche
 - Novo Nordisk
 - Astellas
 - 2012, Verathon, Inc.
- Legal malpractice consulting

Outline

- Background of radial access
- Importance of hemorrhagic events
- Use of radial access in the US
- Studies comparing radial with femoral
 - Clinical outcomes and cost effectiveness
- Drawbacks
- Conclusions

Radial artery catheterization

Background

Coronary angiography via a percutaneous femoral approach has been the standard > As catheter size has decreased, the radial approach has become feasible First coronary angiogram via the radial approach was reported in 1989 First PCI was performed in 1993

YBP

Why radial?

- Therapies to improve outcomes among patients with CAD and ACS have improved significantly
- The rate of death, MI and stroke following CV procedures has sharply declined
- In addition, it has become clear that bleeding is associated with worse outcomes

Bleeding and bad outcomes

Eikelboom JW et al. Circulation 2006;114(8):774-82

Gwinnett Medical Center

Bleeding and mortality

Author/Study (Ref. #)	Patients (n)	Patient Population	Frequency of Blood Transfusion (%)	Impact of Bleeding on Mortality [95% Confidence Interval]	p Value
Kinnaird et al. (1)	10,974	Unselected	5.4	30-day adjusted OR: 3.5 [1.9-6.7]	<0.0001
REPLACE-2 (2)	6,001	Elective and 'urgent' PCI	3.2	1-year adjusted OR: 2.66 [1.44-4.92]	0.002
Ndrepepa et al. (3)	5,348	Elective, ACS	4.0	1-year adjusted HR: 2.96 [1.96-4.48]	<0.0001
ACUITY (4)	13,819	ACS only	4.7	30-day OR: 7.55 [4.68-12.18]	<0.0001
Kim et al. (5)	6,799	Unselected	8.0	1-year RR: 2.03 (transfused patients)	0.0028
Doyle et al. (6)	17,901	Unselected	4.8	30-day adjusted HR: 9.96 [6.94-14.3]	<0.0001
GRACE registry (7)*	24,045	ACS	3.9	In-hospital adjusted OR: 1.64 [1.18-2.28]	<0.0001
Yatskar et al. (8)	6,656	Unselected	1.8	In-hospital adjusted OR: 3.59 [1.66-7.77]	0.001
				1-year adjusted HR: 1.65 [1.01-2.70]	0.048

YBP

Doyle et al. J Am Coll Cardiol. 2009;53:2019-27

Bleeding reduction strategies

- Because of this, strategies to reduce bleeding have become more prominent
 - Lower heparin dosing during PCI
 - Less frequent use of GP IIb/IIIa inhibitors
 - Bivalirudin (Angiomax)
 - Femoral artery closure devices
 - Radial approach

Radial approach increasing

YBP

Radial approach increasing

Geographic variability

Feldman DN et al. Circulation. 2013;127:2295-2306 3/21/15

Gwinnett Medical Center

Randomized studies

- Early small randomized studies demonstrated the feasibility of radial artery catheterization
- Most were small and single-center
- All demonstrated significant reductions in access site bleeding and improved patient satisfaction

Meta analysis of small studies

> 12 RCTs from 1994-2003

- 7 were diagnostic only
- 5 included patients undergoing PCI
- Only 2 included patients with ACS
- Total of 3,224 patients

Agostoni et al, J Am Coll Cardiol 2004;44:349-56

Major adverse CV events

Radial vs Femoral approach Comparison: Outcome: MACE

Study or sub-category	Radial n/N	Femoral n/N	OR (random) 95% Cl	OR (random) 95% Cl	Year
Grinfeld	0/138	2/141		0.20 [0.01, 4.23]	1996
Mann 1996	1/76	0/76	-	3.04 [0.12, 75.80]	1996
ACCESS	20/300	16/300	-#-	1.27 [0.64, 2.50]	1997
BRAFE Stent	3/56	2/56		1.53 [0.25, 9.52]	1997
Mann 1998	0/74	0/68		Not estimable	1998
Cooper	0/101	1/99		0.32 [0.01, 8.04]	1999
Monségu	0/196	0/183		Not estimable	2000
CARAFE	0/140	0/70		Not estimable	2001
Gorge	0/214	0/216		Not estimable	2001
Moriyama	0/108	1/92	_	0.28 [0.01, 6.98]	2002
OCTOPLUS	5/188	8/183		0.60 [0.19, 1.86]	2003
TEMPURA	6/77	8/72		0.68 [0.22, 2.05]	2003
Total (95% CI)	1668	1556	•	0.92 [0.57, 1.48]	
Total events: 35 (Radial), 38	(Femoral)		Í		
Test for heterogeneity: Chi2	= 4.43, df = 7 (P = 0.73)				
Test for overall effect: Z = 0	0.34 (P = 0.73)				
		0.0	001 0.01 0.1 1 10 100 10	000	
			Favours radial Favours femoral		

Agostoni et al, J Am Coll Cardiol 2004;44:349-56

YBP

Access site complications

Comparison: Radial vs Femoral approach Outcome: Entry site complications

Study or sub-category	Radial n/N	Fernoral n/N	OR (random) 95% Cl	OR (random) 95% Cl	Year
Grinfeld	0/138	3/141	_	0.14 [0.01, 2.79]	1996
Mann 1996	0/76	4/76	_	0.11 [0.01, 1.99]	1996
ACCESS	0/300	6/300	_	0.08 [0.00, 1.34]	1997
BRAFE Stent	1/56	3/56		0.32 [0.03, 3.19]	1997
Mann 1998	0/74	3/68		0.13 [0.01, 2.48]	1998
Cooper	0/101	0/99		Not estimable	1999
CARAFE	0/140	2/70		0.10 [0.00, 2.06]	2001
Gorge	1/214	1/216		1.01 [0.06, 16.24]	2001
Moriyama	0/108	3/92	_	0.12 [0.01, 2.31]	2002
OCTOPLUS	3/188	12/183		0.23 [0.06, 0.83]	2003
TEMPURA	0/77	2/72		0.18 [0.01, 3.85]	2003
Total (95% CI)	1472	1373	•	0.20 [0.09, 0.42]	
Total events: 5 (Radial), 39 (Femoral)		•	- - -	
Test for heterogeneity: Chi2	= 2.66, df = 9 (P = 0.98)				
Test for overall effect: Z = 4	.20 (P < 0.0001)				
		(0.001 0.01 0.1 1 10 100 10	000	
			Favours radial Favours femoral		

Agostoni et al, J Am Coll Cardiol 2004;44:349-56

YBP

Secondary endpoints

Longer fluoroscopy time for radial
 8.9 minutes vs. 7.8 minutes, p<0.001

Mean hospital stay shorter for radial
 1.8 days vs. 2.4 days, p<0.001

Fotal hospital charge lower for radial

Agostoni et al, J Am Coll Cardiol 2004;44:349-56

Larger meta analysis

- > 23 studies from 1993-2007
- Major bleeding
 - Radial 0.5% vs. Femoral 2.3%, p<0.001</p>
 - Odds ratio 0.27 (95% CI 0.16-0.45)
- Trend toward lower death, MI and stroke
 - Odds ratio 0.71 (95% CI 0.49-1.01), p=0.058
- No significant difference in mortality
 - Odds ratio 0.74 (95% CI 0.42-1.30), p=0.29

RIVAL study (STEMI and NSTEMI)

	Radial (n=3507) %	Femoral (n=3514) %	HR	95% C	l P
Primary Outcome Death, MI, Stroke, Non-CABG Major Bleed	3.7	4.0	0.92	0.72-1.1	17 0.50
Secondary Outcomes	S				
Death, MI, Stroke	3.2	3.2	0.98	0.77-1.2	28 0.90
Non-CABG Major Bleeding	0.7	0.9	0.73	0.43-1.2	23 0.23
	Jolly SS et	al. Lancet. 2011:377	7:1409-1420.	YBP 3/21/15	Gwinnett Hospital System

RIVAL study (STEMI and NSTEMI)

	Radial (n=3507)	Femoral (n=3514)	Ρ
Access site Cross-over (%)	7.6	2.0	<0.0001
PCI Procedure duration (min)	35	34	0.62
Fluoroscopy time (min)	9.3	8.0	<0.0001
Persistent pain at access site >2 weeks (%)	2.6	3.1	0.22
Patient prefers assigned access site for next procedure (%)	90	49	<0.0001
		YBP	Ů

l better Femoral better Hazard Ratio(95% CI) YBP 3/21/15

STEMI-RADIAL

Bernat I et al. J Am Coll Cardiol. 2014;63(10):964-972

RIFLE (STEMI only)

YBP

Romagnoli E et al. J Am Coll Cardiol. 2012;60:2481-2489

RIFLE (STEMI only)

Romagnoli E et al. J Am Coll Cardiol. 2012;60:2481-2489

MATRIX (all ACS)

End point	Radial (n=4,197), %	Femoral (n=4,207), %	p-value
MACE	8.8	10.3	0.031
Net adverse clinical events	9.8	11.7	0.009
All-cause mortality	1.6	2.2	0.045
MI	7.2	7.9	0.20
Stroke	0.4	0.4	0.20
BARC 3 or 5 bleeding	1.6	2.3	0.013

YBP

Valgimigli M et al. Lancet. 2015; online first

SAFE-PCI

- Women are frequently underrepresented in randomized studies
- Women have higher rates of access site bleeding in femoral cases
- Women have smaller radial arteries
- Randomized 1,787 women at 60 US sites to radial vs. femoral approach

SAFE-PCI

	Radial (N=290)	Femoral (N=291)	Р
Procedure duration (min)	51.6 ± 32.3	49.9 ± 30.5	0.46
Total radiation dose (mGy)	1604 ± 1394	1472 ± 1274	0.26
Total contrast volume (mL)	152.7 ± 76.9	165.6 ± 82.7	0.03
Patient prefers assigned access site for next procedure	71.9%	23.5%	<0.01

YBP

Rao SV et al. J Am Coll Cardiol Intrv. 2014;7:857-867

SAFE-PCI

	Radial (N=893)	Femoral (N=894)	OR (95% CI)	Ρ
BARC 2, 3, 5 bleeding or Vasc Complications	0.6%	1.7%	0.3 (0.1-0.9)	0.03
Access site crossover	6.7%	1.9%	3.7 (2.1-6.4)	<0.001

YBP

Rao SV et al. J Am Coll Cardiol Intrv. 2014;7:857-867

Reduction in length of stay, cost

Mann T et al. J Am Coll Cardiol. 1998;32(3):572-6

YBP

Cost effectiveness

- Radial PCI reduces costs via two main mechanisms
 - Shorter hospital stay
 - Lower bleeding event rate
- Radial access reduces the cost per PCI by \$800-\$1,300 depending on the study
 - Over 1,200 PCIs and 2,100 catheterizations without PCI performed at GMC per year

Mann T *et al. J Am Coll Cardiol*. 1998;32(3):572-6 Applegate E *et al. Catheter Cardiovasc Interv*. 2013;82(4):e375-84 Amin AP *et al. JACC Cardiovasc Interv*. 2013;6(8):827-34

So what are the downsides?

> Higher crossover rate

- 4-7% based on randomized studies
- Note that crossover rate from femoral to radial was about 2% in randomized studies
- Increased radiation exposure
 Seen predominantly in older studies and the gap is diminishing

So what are the downsides?

Radial artery occlusion

- Symptomatic in about 2-3%
- Rarely long-term consequences
- Unknown consequences for subsequent access or use as a bypass conduit
- Steep learning curve for operators, staff
 - Spasm, anatomic differences
 - Different setup

Learning curve

YBP

Learning curve

Spaulding et al. Cath Cardiovasc Diagnosis 1996;39:365-370

Conclusions

- Radial artery catheterization is preferred by patients
- Radial artery catheterization reduces bleeding events and may improve mortality among STEMI patients and patients at high risk of bleeding
- Radial artery catheterization reduces hospital costs

Fad or here to stay?

