IVUS, FFR and iFR

WHAT IS IT AND WHY DO WE USE IT?

Rob Timberlake, RCIS Lawrence Memorial Hospital

First, basic arterial anatomy and physiology

• Lipoprotein deposition.

• Foam cell creation.

• Platelet aggregation.

Responsibility of smooth
 muscle cells.

 Plaque rupture and Thrombosis.

• Timescale of plaque formation.

NOMANCLATURE AND MAIN HISTOLOGY

Initial lesion

- histologically "normal"
- macrophage infiltration
- isolated foam cells

Fatty streak mainly intracellular lipid accumulation

Intermediate lesion

- intracellular lipid accumulation
- small extracellular lipid pools

Atheroma

- intracellular lipid accumulation
- core of extracellular lipid

Fibroatheroma

- single or multiple lipid cores
- fibrotic/calcific layers

Complicated lesion

- surface defect
- hematoma-hemorrhage
- thrombosis

SEQUENCES IN PROGRESSIO OF ATHEROSCLEROSIS

Vascular Remodeling

Libby P. Circulation. 2001;104:365-372.

Vascular Remodeling

ESS = Endothelial Shear Stress

Vascular remodeling

Natural Progression of Atherosclerosis

Concentric vs Eccentric Plaques

Cross-sectional view

Longitudinal or Angiographic view

Concentric vs Eccentric Plaques

Pitfalls of Coronary Angiography Lumen-o-gram

Focal narrowing

Diffuse narrowing

Vessel Wall Remodeling & Plaque Disruption

Modified form Schoenhagen et al. JACC 2001: 38:297 and Glagov et al. NEJM. 1987;316:1371)

Pitfalls of Coronary Angiography Lumen-o-gram

IVUS stands for Intra Vascular Ultra Sound.
Uses ultrasound to create a tomographic image of the vasculature.
Facilitates direct measurements of the lumen dimensions.
Ultrasound allows imaging of soft tissues within the arterial wall.
Allows characterization of plaque size, distribution and composition.

IVUS IMAGING

Densely packed bundles of collagen fibers with no evidence of intra-fiber lipid accumulation. No evidence of macrophage infiltration. Appears dark yellow on Movat stained section.

Fibrous tissue

Fibro-lipidic

Loosely packed bundles of collagen fibers with regions of lipid deposition present. These areas are cellular and no cholesterol clefts or necrosis are present. Some macrophage infiltration. Increase in extracellular matrix. Appears turquoise on Movat stained section.

Highly lipidic necrotic region with remnants of foam cells and dead lymphocytes present. No collagen fibers are visible and mechanical integrity is poor. Cholesterol clefts and micro calcifications are visible.

Calcium

Focal area of dense calcium. Appears purple on Movat. Usually falls out section, but calcium crystals are evident at borders.

• How is FFR performed?

• Why do we use it?

- PIVOLCAND IPR operation where the 0:08 FFR 0.80 0.80 рыра 24 1000 10 10 10 10
- What does that mean?

 Hyperemia = the increase in blood perfusion to different tissues in the body through dilation of the microvasculature.

HYPEREMIA

FAME Study

Tonino, et al. New England Journal of Medicine 2009; 360:213-24.

The Same, Yet Different... Identical % Stenosis But Different Physiologic Significance

MLD, crosssectional area, and stenosis resistance are identical, but due to the different sizes of the perfusion territory the physiologic severity is different!

Pijls, N. (2009). Concepts and Practical Set-Up of Coronary Pressure Measurements.

iFR Instantaneous Free Wave Ratio

Figure 1: The iFR is Identified in Real-time Permitting Beat-bybeat Calculation of iFR

The wave-free period is automatically identified and marked with a green line. Instantaneous wave-free ratio (iFR) is the pressure ratio calculated during this phase of the cardiac cycle.

Figure 1: The iFR is Identified in Real-time Permitting Beat-bybeat Calculation of iFR

The wave-free period is automatically identified and marked with a green line. Instantaneous wave-free ratio (iFR) is the pressure ratio calculated during this phase of the cardiac cycle.

Figure 1: The iFR is Identified in Real-time Permitting Beat-bybeat Calculation of iFR

The wave-free period is automatically identified and marked with a green line. Instantaneous wave-free ratio (iFR) is the pressure ratio calculated during this phase of the cardiac cycle.

Closing

