Supraventricular Tachycardia (SVT)

Bruce Stambler, MD

Piedmont Heart Atlanta, GA

Supraventricular Tachycardia Objectives

- Types and mechanisms
 - AV nodal reentrant tachycardia (AVNRT)
 - AV reciprocating tachycardia (AVRT)
- Treatment options
 - Acute
 - New investigational nasal spray (etripamil)
 - Chronic
 - Catheter ablation

Paroxysmal supraventricular tachycardia (PSVT)

Supraventricular Tachycardia (SVT) Terminology

- Supraventricular a rhythm process in which the ventricles are activated from the atria or AV node/His bundle region
- Usually paroxysmal, i.e, starts and stops abruptly; in which case, called PSVT
- QRS typically <u>narrow</u>; thus, also termed narrow complex tachycardia

Supraventricular Tachycardia Not all SVTs have a narrow QRS complex

Supraventricular Tachyarrhythmias

Primary Mechanisms of PSVT

Paroxysmal supraventricular tachycardia (PSVT)

- In the U.S., there are:
 - 600,000 persons with PSVT.
 - 90,000 new cases per year
 - 50,000 emergency department visits per year

• Orejarena LA, et al. Paroxysmal supraventricular tachycardia in the general population. J Am Coll Cardiol 1998;31:150–7.

[•] Murman DH, et al. U.S. emergency department visits for supraventricular tachycardia, 1993-2003. Acad Emerg Med 2007;14: 578–81.

Influence of Age on SVT Mechanism

Porter MJ, et al. Heart Rhythm 2004;1:393

Influence of Gender on SVT Mechanism

Porter MJ, et al. Heart Rhythm 2004;1:393

Prospective Placebo Controlled Randomized Study of Caffeine in Patients with SVT Undergoing Electrophysiologic Testing

- Moderate caffeine intake associated with:
 - significant increases in systolic and diastolic BPs
 - no effect on heart rate, cardiac conduction or refractoriness
 - no effect on induction of SVT or more rapid rates of induced tachycardias.
- Moderate caffeine intake should not be:
 - considered to cause cardiac arrhythmias.
 - restricted in patients with a history of arrhythmias.

J Cardiovasc Electrophysiol, Vol. 26, pp. 1-6, January 2015

Supraventricular Tachycardia Diagnosis

ECG is cornerstone

- Tachycardia rate
- Wide vs. narrow QRS
- Relationship of P wave and QRS complex
- Morphology of P wave
- Zones of transition for clues to mechanism:
 - onset
 - termination
 - slowing, AV nodal block
 - bundle branch block

Differential Dx of Regular SVT

Differential Dx of Regular SVT

- Short RP tachycardia
 - AV nodal reentrant tachycardia (AVNRT)
 - AV reciprocating (AVRT) [ORT (Orthodromic reciprocating tachycardia)]
 - Atrial tachycardia with slow AV nodal conduction

Short RP interval

Differential Dx of Regular SVT

Long RP tachycardia

- Atrial tachycardia
- Sinus tachycardia
- Sinus node reentry
- Atypical AV nodal reentrant tachycardia
- Permanent form of junctional reciprocating tachycardia

Long RP interval

Supraventricular Tachycardia Mode of Tachycardia Termination

Intracardiac Electrophysiology

Electrode catheters:

High right atrium (HRA) His bundle (His) Right ventricle (RV) Coronary sinus (CS) Ablation catheter

200 msec

100

History of Electrophysiology

1929 Cardiac catheterization (Forssman) **1945 Intracardiac electrogram** 1968 Surgical ablation of accessory pathway (Cobb) 1969 Catheter recording of His bundle signal (Scherlag) 1971 Programmed ventricular stimulation (Wellens) 1981 Catheter ablation in human (Scheinman) 1986 Radiofrequency current catheter ablation 1989 FDA approval IV adenosine for PSVT **1995 Electroanatomic mapping techniques**

45 yo Female with Palpitations & "Panic Attacks"

AV Nodal Reentrant Tachycardia

- Origin: AV nodal region
- Mechanism: Reentry
- Tachycardia Rate: 100 280 BPM (most around 170 bpm)
- ECG: QRS normal, P-wave not seen during tachycardia (within QRS).
- Clinical Characteristics: most common SVT in adults, females>males, can occur at any age (commonly in mid-40s), not associated with heart disease, catecholamine-sensitive

AV Nodal Reentry Tachycardia (AVNRT)

Note fixed, short RP interval mimicking r' deflection of QRS

AVNRT: Dual AV Node Physiology

AVNRT Normal Sinus Rhythm

During sinus beats

- conduction via fast pathway
- conduction via slow pathway blocked

Normal AVN Conduction Curve

Dual AVN Physiology

AVNRT: Dual AV Nodal Pathways

AVNRT: Initiation of Tachycardia

AVNRT: Initiation of SVT

Septal VA interval < 70 ms

AV Nodal Reentrant Tachycardia

- Sometimes terminated by vagal maneuvers
- Highly responsive to AV nodal blocking agents:
 - Adenosine IV
 - Beta blockers IV
 - Ca²⁺ channel blockers
 - Diltiazem, verapamil IV
 - Etripamil Nasal Spray (Investigational).
- Recurrences common on medical therapy

AVNRT Catheter Ablation Techniques

Slow Pathway Ablation

- posterior approach (close to CS os)
- preferred technique
- does not affect normal AV conduction
- risk of AV block ~ 0.5-1%
- 95-99% successful

AVNRT: Slow Pathway Ablation

35 yo Male with Palpitations in the ER

AV Reciprocating Tachycardia "Orthodromic" AVRT (ORT)

AVRT: WPW syndrome: Preexcitation 12-Lead ECG

Incidence: 1-2/500 have an accessory pathway ~50% symptomatic with WPW syndrome

Wolff-Parkinson-White Pattern: Ventricular Preexcitation

- ECG requirements for diagnosis of WPW Pattern
- P-R interval < 120 ms
- Normal P wave vector (to exclude junctional rhythm)
- Presence of a delta wave
- QRS duration > 100 ms
- WPW ECG pattern + SVT = WPW syndrome

Wolff-Parkinson-White (WPW) Syndrome

The American Heart Journal

VOL. V

AUGUST, 1930

No. 6

Original Communications

BUNDLE-BRANCH BLOCK WITH SHORT P-R INTERVAL IN HEALTHY YOUNG PEOPLE PRONE TO PAROXYSMAL TACHYCARDIA

LOUIS WOLFF, M.D., BOSTON, MASS., JOHN PARKINSON, M.D., LONDON, ENG., AND PAUL D. WHITE, M.D., BOSTON, MASS.

AV Reentry Tachycardia (AVRT): Accessory pathways

Atrioventricular bypass tracts, or accessory pathways, can be found anywhere along the muscular portion of the posterior and lateral aspects of the mitral and tricuspid annuli. They can be classified by their anatomic location as either

- left-sided (50%)
- posteroseptal (25%)
- right-sided (15%)
- mid, anteroseptal (10%)

Multiple APs: 2-10% of pts.

AP: histologically strands of NL myocardium www.blaufuss.org

Concealed Accessory Pathway

<u>No</u> Delta wave during NSR (but AP capable of *retrograde* conduction)

AVRT: Reentrant Circuits

Preexcited Atrial Fibrillation WPW Syndrome

WPW: Atrial fibrillation with rapid ventricular response

Risk of Sudden Cardiac Death in WPW:

- Symptomatic WPW: lifetime risk 3-4%
- Asymptomatic WPW: risk <1:10,000 (Class IIa indication catheter ablation)

Diagnosis of Orthodromic AVRT in the EP Lab

Orthodromic AVRT: Mechanism

Orthodromic AVRT: Initiation of SVT

Treatment of AP-Mediated Tachycardias

*Avoid digoxin

Treatment of AP-Mediated Tachycardias

Wide complex tachycardia (WPW syndrome):

- AF with Preexcitation
- Antidromic tachycardia
 - NO AV nodal blockers
 - IV procainamide, ibutilide
 - Electrical cardioversion

20

•••••

Treatment of AP-Mediated Tachycardias

Chronic therapy:

Class IC (flecainide)
+ AV nodal blocker

ORTARTAF

*Avoid digoxin

AVRT: Catheter ablation of accessory pathway

WPW Catheter Ablation Left Lateral Accessory Pathway

I.R. 08/11/06

WPW Catheter Ablation Left Lateral Accessory Pathway

I.R. 08/11/06

WPW Catheter Ablation Left Lateral Accessory Pathway

I.R. 08/11/06

Catheter Ablation of Accessory Pathways

AP Location	Success Rate (%)	Recurrence Rate (%)
Left free wall	>95	2-5
Right free wall	85-90	10-15
Posteroseptal	93-98	3-6
Anteroseptal, midseptal	95-98	3-6

Complication rate: 1-4% (AV block ~1-3%, esp with septal APs)

Acute Treatment of PSVT

2015 ACC/AHA/HRS Guideline for the Management of Adult Patients with SVT Heart Rhythm 2016 13, e136-e221DOI: (10.1016/j.hrthm.2015.09.019)

Etripamil

- Novel, L-type calcium channel antagonist with rapid metabolism
- Rapid onset of action
- Short-acting
- Administered as a nasal spray
- Being developed as a self-administered therapy to terminate PSVT outside of the emergency room or hospital.

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2018 MILESTONE PHARMACEUTICALS INC. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). VOL. 72, NO. 5, 2018

Etripamil Nasal Spray for Rapid Conversion of Supraventricular Tachycardia to Sinus Rhythm

Bruce S. Stambler, MD,^a Paul Dorian, MD,^b Philip T. Sager, MD,^c Douglas Wight, MSc,^d Philippe Douville, P_HD,^d Diane Potvin, MSc,^e Pirouz Shamszad, MD,^f Ronald J. Haberman, MD,^g Richard S. Kuk, MD,^h Dhanunjaya R. Lakkireddy, MD,ⁱ Jose M. Teixeira, MD,^j Kenneth C. Bilchick, MD,^k Roger S. Damle, MD,¹ Robert C. Bernstein, MD,^m Wilson W. Lam, MD,ⁿ Gearoid O'Neill, MD,^o Peter A. Noseworthy, MD,^p Kalpathi L. Venkatachalam, MD,^q Benoit Coutu, MD,^r Blandine Mondésert, MD,^s Francis Plat, MD^d

Stambler BS, et al. JACC 2018;72:489-97

MULTI-CENTER, PLACEBO-CONTROLLED, DOUBLE-BLINDED, **DOSE-RANGING PHASE II** ELECTROPHYSIOLOGICAL STUDY OF INTRANASAL ADMINISTRATION **OF ETRIPAMIL FOR THE** CONVERSION OF INDUCED PSVT (NODE-1)

Clinicaltrial.gov ID: NCT02296190

ELIGIBILITY CRITERIA

- Subjects who met all of the following inclusion criteria were eligible to participate:
 - Male or female, aged ≥18 years;
 - History of PSVT;
 - Scheduled to undergo EP study and possible catheter ablation;
 - Provided written informed consent.

STUDY DESIGN

Objectives: Demonstrate **superiority of intranasal etripamil over placebo** in terminating SVT induced in the EP Lab and perform a **dose ranging trend analysis**

Primary Efficacy Endpoint Conversion rate of PSVT#

#within 15 min of study drug administration *p<0.05 vs placebo

Primary Endpoint

Study drug	Placebo	Etripamil				
Dose	0 mg	35 mg	70 mg	105 mg	140 mg	
Subjects converted at T15	7/20 35%	13/20 65%	20/23 87%	15/20 75%	20/21 95%	
Treatment comparisons (vs. placebo)		Ļ	Ļ		Ļ	
Odds ratio		3.45	12.38	5.57	37.14	
95% CI of odds ratio		(0.79, 15.46)	(2.28, 82.26)	(1.19, 27.63)	(3.84, 1654.17)	
Fisher's exact test p-value (vs placebo)		0.1128	0.0006	0.0248	<.0001	
Cochran-Armitage test p-value (trend test)					<.0001	

Kaplan-Meier Plots of Time to PSVT Conversion

Adverse Events

System organ class	Placebo (N = 20)	Etripamil 35 mg (N = 20)	Etripamil 70 mg (N = 23)	Etripamil 105 mg (N = 20)	Etripamil 140 mg (N = 21)
NASAL DISCOMFORT	1 (5.0)	12 (60.0)	11 (47.8)	7 (35.0)	8 (38.1)
NASAL CONGESTION	0 (0.0)	5 (25.0)	6 (26.1)	9 (45.0)	8 (38.1)
THROAT IRRITATION	2 (10.0)	9 (45.0)	8 (34.8)	7 (35.0)	4 (19.0)
COUGH	0 (0.0)	0 (0.0)	4 (17.4)	3(15.0)*	2 (9.5)

Serious Adverse Event

* Severe cough occurred in one subject treated with etripamil 105 mg

Systolic Blood Pressure (SBP)

- The NODE-1 study supports development of intranasal etripamil in a "real world" setting of patient self-administration to terminate PSVT.
- If successful, etripamil could provide a fastacting nasal spray that can safely terminate acute PSVT without the need for an urgent care visit and could change the treatment paradigm for acute management of PSVT.

Multi-Center, Randomized, Double-Blind, Placebo-Controlled, Efficacy, and Safety Study of Etripamil Nasal Spray for the Termination of <u>Spontaneous</u> Episodes of Paroxysmal Supraventricular Tachycardia

The NODE-301 Trial

Clinicaltrial.gov ID: NCT03464019 Protocol: MSP-2017-1138

ELIGIBILITY CRITERIA

- Subjects who meet all of the following inclusion criteria are eligible to participate:
 - Male or female, aged ≥18 years;
 - ECG documented PSVT;
 - History suggestive of sustained episodes (lasting ~20 min or longer)
 - Signed written informed consent.